首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   13篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   2篇
  2016年   3篇
  2015年   8篇
  2014年   9篇
  2013年   14篇
  2012年   20篇
  2011年   13篇
  2010年   10篇
  2009年   8篇
  2008年   10篇
  2007年   17篇
  2006年   12篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1980年   1篇
排序方式: 共有177条查询结果,搜索用时 203 毫秒
31.
32.
33.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of upper and lower motor neurons. Although the etiology of ALS is obscure, genetic studies of familiar ALS suggest a multifactorial etiology for this condition. Similarly, there probably are multiple causes for sporadic ALS. Autoimmune-mediated motor neuron dysfunction is one proposed etiology for sporadic ALS. In the present study, anti-glycolipid antibodies including GM1, GD1b, GD3, and sulfoglucuronosyl paragloboside (SGPG) were investigated in the sera of a large number of patient samples, including 113 ALS patients and 50 healthy controls, by means of enzyme-linked immunosorbent assay with affinity parametric complex criterion evaluation and thin-layer chromatography immunooverlay (immuno-TLC). Anti-SGPG antibodies were found in the sera of 13.3% ALS patients (15 out of 113). The highest titer reached 1:1600. The presence of anti-SGPG antibodies in the serum samples was also confirmed by immuno-TLC. Importantly, a multiple logistic regression analysis showed that the presence of anti-SGPG antibody was positively correlated with age (p < .01) and negatively correlated with ALS Functional Rating Scale score (p < .05). Moreover, the localization of SGPG-immunoreactivity on the motor neurons of rat spinal cord and a mouse motor neuronal cell line, NSC-34 was observed by an immunofluorescence method. These data suggest that SGPG could represent a specific pathogenic antigen in those ALS patients. The presence of anti-SGPG antibodies in the serum of ALS patients should represent a diagnostic biomarker of ALS, and it could reflect the severity of the disease.  相似文献   
34.
Microglial interaction with extracellular beta-amyloid fibrils (fAbeta) is mediated through an ensemble of cell surface receptors, including the B-class scavenger receptor CD36, the alpha(6)beta(1)-integrin, and the integrin-associated protein/CD47. The binding of fAbeta to this receptor complex has been shown to drive a tyrosine kinase-based signaling cascade leading to production of reactive oxygen species and stimulation of phagocytic activity; however, little is known about the intracellular signaling cascades governing the microglial response to fAbeta. This study reports a direct mechanistic link between the fAbeta cell surface receptor complex and downstream signaling events responsible for NADPH oxidase activation and phagosome formation. The Vav guanine nucleotide exchange factor is tyrosine-phosphorylated in response to fAbeta peptides as a result of the engagement of the microglia fAbeta cell surface receptor complex. Co-immunoprecipitation studies demonstrate an Abeta-dependent association between Vav and both Lyn and Syk kinases. The downstream target of Vav, the small GTPase Rac1, is GTP-loaded in an Abeta-dependent manner. Rac1 is both an essential component of the NADPH oxidase and a critical regulator of microglial phagocytosis. The direct role of Vav in fAbeta-stimulated intracellular signaling cascades was established using primary microglia obtained from Vav(-/-) mice. Stimulation of Vav(-/-) microglia with fAbeta failed to generate NADPH oxidase-derived reactive oxygen species and displayed a dramatically attenuated phagocytic response. These findings directly link Vav phosphorylation to the Abeta-receptor complex and demonstrate that Vav activity is required for fAbeta-stimulated intracellular signaling events upstream of reactive oxygen species production and phagosome formation.  相似文献   
35.
36.
Mutations in the ATP-binding cassette (ABC) transporters ABCG5 and ABCG8 lead to sitosterolemia, a disorder characterized by sterol accumulation and premature atherosclerosis. ABCG5 and ABCG8 are both half-size transporters that have been proposed to function as heterodimers in vivo. We have expressed the recombinant human ABCG5 and ABCG8 genes in the yeast Pichia pastoris and purified the proteins to near homogeneity. Purified ABCG5 and ABCG8 had very low ATPase activities (<5 nmol min(-)(1) mg(-)(1)), suggesting that expression of ABCG5 or ABCG8 alone yielded nonfunctional transporters. Coexpression of the two genes in P. pastoris greatly increased the yield of pure proteins, indicating that the two transporters stabilize each other during expression and purification. Copurified ABCG5/G8 displayed low but significant ATPase activity with a V(max) of approximately 15 nmol min(-)(1) mg(-)(1). The ATPase activity was not stimulated by sterols. The catalytic activity of copurified ABCG5/G8 was characterized in detail, demonstrating low affinity for MgATP, a preference for Mg as a metal cofactor and ATP as a hydrolyzed substrate, and a pH optimum near 8.0. AlFx and BeFx inhibited MgATP hydrolysis by specific trapping of nucleotides in the ABCG5/G8 proteins. Furthermore, ABCG5/G8 eluted as a dimer on gel filtration columns. The data suggest that the hetero-dimer is the catalytically active species, and likely the active species in vivo.  相似文献   
37.
Primary growth is characterized by cell expansion facilitated by water uptake generating hydrostatic (turgor) pressure to inflate the cell, stretching the rigid cell walls. The multiple source theory of root growth hypothesizes that root growth involves transport of water both from the soil surrounding the growth zone and from the mature tissue higher in the root via phloem and protophloem. Here, protophloem water sources are used as boundary conditions in a classical, three-dimensional model of growth-sustaining water potentials in primary roots. The model predicts small radial gradients in water potential, with a significant longitudinal gradient. The results improve the agreement of theory with empirical studies for water potential in the primary growth zone of roots of maize (Zea mays). A sensitivity analysis quantifies the functional importance of apical phloem differentiation in permitting growth and reveals that the presence of phloem water sources makes the growth-sustaining water relations of the root relatively insensitive to changes in root radius and hydraulic conductivity. Adaptation to drought and other environmental stresses is predicted to involve more apical differentiation of phloem and/or higher phloem delivery rates to the growth zone.Plant growth involves water uptake by the cells and expansion of the cell walls under the resultant turgor (internal hydrostatic pressure). The water uptake and increase in cell volume are accompanied by nutrient and metabolite deposition. Thus, hydraulics of growth (i.e. the energies, conductivities, and fluxes of water in growing tissue) are fundamental to understanding primary plant growth. Quantitatively, the driving force for water movement in the plant, as in other porous media, is considered to be the gradient in water potential (Ψ), an energy per unit volume given in MPa. Thus, primary growth can be modeled by considering plant tissue to be a distributed sink for water, with low Ψ and/or high hydraulic conductivity driving water deposition into rapidly expanding regions. Molz and Boyer (1978) developed the theoretical basis for predicting the radial water flux in one dimension within the intercalary meristem of growing soybean (Glycine max) hypocotyls. In this aerial tissue, water moves from the xylem both outward to the epidermis and inward to the pith. Thus, in the growing hypocotyls, Ψ is predicted to be least negative in the xylem and to decrease toward the epidermis and the pith. These predictions for growth-induced or growth-sustaining Ψ were confirmed when the experimental technology became sensitive enough to detect the gradients in Ψ (Nonami and Boyer, 1993). Passioura and Boyer (2003) expanded the theory to incorporate anatomical detail and corresponding spatial patterns of hydraulic conductivity. Their model explains experimental results on water relations during growth transients for many areas of the plant.The hydraulics of root growth differ from shoot growth because of differences in xylem anatomy. Root xylem becomes functional perhaps 1 cm behind the tip and well behind the growth zone. To enter the growing cells near the maize (Zea mays) root tip, externally supplied metabolites must move several millimeters without phloem (Fig. 1), and any water supplied by functional xylem would need to move more than 1 cm. Silk and Wagner (1980) provided a theoretical framework for a two-dimensional treatment of the growth-sustaining Ψ gradients in maize roots. They assumed that the water source was external (the soil or root-bathing medium) and that the root surface was in equilibrium with the soil or bathing medium, so that the flow path to growing cells in the root was predicted to be primarily inward. As in the shoot model, growing tissue was seen as a distributed sink for water. However, since the publication of that theory, experimental studies have revealed that the root tip is not in equilibrium with the bathing medium (Pritchard et al., 1996, 2000; Gould et al., 2004; Shimazaki et al., 2005). Pressure probes combined with osmotic potential determinations have shown that the Ψ of exterior root cells ranges from −0.17 to −0.6 MPa, depending on environmental conditions. This range is more negative than in the nutrient medium. Furthermore, evidence has accumulated that at least some water for root growth comes from the phloem. The most obvious evidence is perhaps the growth of nodal (adventitious) roots of maize, rice (Oryza sativa), and other gramineous plants (Westgate and Boyer, 1985). This growth is a normal part of crop development. The nodal roots grow through air and then dry layers of surface soil, making it unlikely that the expanding root cells obtain water from the dry media surrounding the root. Empirical and theoretical studies have concluded that the phloem probably provides water for growth of the primary maize root (Bret-Harte and Silk, 1994; Frensch and Hsiao, 1995; Pritchard, 1996; Pritchard et al., 1996, 2000; Hukin et al., 2002; Gould et al., 2004).Open in a separate windowFigure 1.Primary root growth zone. The tip of the seedling root of maize showing the meristem as part of the apical third of the elongation zone. The boundary of this root section was digitized to provide the computational body-fit grid used for the model. [See online article for color version of this figure.]The model described here follows the concepts of Pritchard and colleagues (1996, 2000) in assuming a pressure-driven bulk flow of solution through the phloem to the region where phloem is beginning to be functional (1–4 mm from the apex; Fig. 1). Water movement can occur from both the surrounding soil and the developing phloem. Henceforth, we refer to the “external water source equilibrium” or EE model, for which the boundary condition is solely an exterior medium of fairly high Ψ (−0.005 to −0.05 MPa) and no conditions are placed on the phloem Ψ (Silk and Wagner (1980), that the exterior of the root is in equilibrium with its bathing solution. Empirical studies have shown that this model is not realistic, because the root maintains peripheral cells at more negative Ψ than the bathing medium. Since this is hypothesized to occur by deposition of apoplastic solutes, we will refer to a model with external water source and apoplastic solutes near the exterior as the EASE model.

Table I.

Acronyms for models and definitions of symbols used in mathematical modeling
AcronymBoundary Condition
EEExternal water source Equilibrium
EASEExternal water source and Apoplastic Solutes near the Exterior
PEWSPhloem and External Water Sources
SymbolPhysical SignificanceUnits
LRelative elemental growth rate h−1
Growth velocity vectormm h−1
Water flux vectormm h−1
Hydraulic conductivity tensormm2 s−1 MPa−1
ΨTotal water potentialMPa
Unit normal to the surface
sControl surfacemm2
VControl volumemm3
rRadial coordinatemm
zLongitudinal coordinatemm
x, yCartesian coordinatesmm
JJacobian Matrix of Transformation
Open in a separate windowA “multiple source” model places boundary conditions on the Ψ of both the bathing medium and the phloem to simulate both external and internal source activity, so we will refer to this model as the PEWS (for phloem and external water sources) model.  相似文献   
38.
Estrogen has been demonstrated to enhance the use of hippocampal-based place learning while reducing the use of striatal-based motor-response strategy (Korol, D.L., Malin, E.L., Borden, K.A., Busby, R.A., & Couper-Leo, J. (2004). Shifts in preferred learning strategy across the estrous cycle in female rats. Horm. Behav. 45, 330–338). Previous research has focused on task acquisition and the switch from a place to motor-response navigation with training. The current paradigm allowed an examination of the interplay between these two systems by having well-trained animals switch strategies “on demand.” Female and male Sprague–Dawley rats were taught a motor-response task on a plus maze. The rats were then introduced to a place task and taught to switch, by cue, from the motor-response to place strategy. Finally, the rats were trained to continuously alternate between place and motor-responses strategies. The maze configuration allowed for an analysis of cooperative choices (both strategies result in the same goal arm), competitive choices (both strategies result in different goal arms), and single strategy choices (can only use the motor-response strategy). The results indicate that sex and estrogen-related effects on navigation strategy are limited to the initial stages of learning a task. The role of sex and estrogen is diminished once the task is well learned, and presumably, the relative involvement of the hippocampal and striatal systems is established.  相似文献   
39.

Background

The purpose of our study was to examine the association of prior outpatient use of statins and angiotensin converting enzyme (ACE) inhibitors on mortality for subjects ≥ 65 years of age hospitalized with acute COPD exacerbations.

Methods

We conducted a retrospective national cohort study using Veterans Affairs administrative data including subjects ≥65 years of age hospitalized with a COPD exacerbation. Our primary analysis was a multilevel model with the dependent variable of 90-day mortality and hospital as a random effect, controlling for preexisting comorbid conditions, demographics, and other medications prescribed.

Results

We identified 11,212 subjects with a mean age of 74.0 years, 98% were male, and 12.4% of subjects died within 90-days of hospital presentation. In this cohort, 20.3% of subjects were using statins, 32.0% were using ACE inhibitors or angiotensin II receptor blockers (ARB). After adjusting for potential confounders, current statin use (odds ratio 0.51, 95% confidence interval 0.40–0.64) and ACE inhibitor/ARB use (0.55, 0.46–0.66) were significantly associated with decreased 90-day mortality.

Conclusion

Use of statins and ACE inhibitors prior to admission is associated with decreased mortality in subjects hospitalized with a COPD exacerbation. Randomized controlled trials are needed to examine whether the use of these medications are protective for those patients with COPD exacerbations.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号